Kernels by properly colored paths in arc-colored digraphs
نویسندگان
چکیده
منابع مشابه
Monochromatic cycles and monochromatic paths in arc-colored digraphs
We call the digraph D an m-colored digraph if the arcs of D are colored with m colors. A path (or a cycle) is called monochromatic if all of its arcs are colored alike. A cycle is called a quasi-monochromatic cycle if with at most one exception all of its arcs are colored alike. A subdigraph H in D is called rainbow if all its arcs have different colors. A set N ⊆ V (D) is said to be a kernel b...
متن کاملComplexity of trails, paths and circuits in arc-colored digraphs
We deal with different algorithmic questions regarding properly arc-colored s-t trails, paths and circuits in arc-colored digraphs. Given an arc-colored digraph D with c ≥ 2 colors, we show that the problem of determining the maximum number of arc disjoint properly arc-colored s-t trails can be solved in polynomial time. Surprisingly, we prove that the determination of a properly arc-colored s-...
متن کاملComplexity of Paths, Trails and Circuits in Arc-Colored Digraphs
We deal with different algorithmic questions regarding properly arc-colored s-t paths, trails and circuits in arc-colored digraphs. Given an arc-colored digraph D with c ≥ 2 colors, we show that the problem of maximizing the number of arc disjoint properly arc-colored s-t trails can be solved in polynomial time. Surprisingly, we prove that the determination of one properly arc-colored s-t path ...
متن کاملProperly colored trails, paths, and bridges
The proper-trail connection number of a graph is the minimum number of colors needed to color the edges such that every pair of vertices are joined by a trail without two consecutive edges of the same color; the proper-path connection number is defined similarly. In this paper we consider these in both bridgeless graphs and graphs in general. The main result is that both parameters are tied to ...
متن کاملRestricted domination in arc-colored digraphs
Let H = (V (H), A(H)) be a digraph possibly with loops and D = (V (D), A(D)) a digraph whose arcs are colored with the vertices of H (this is what we call an H-colored digraph); i.e. there exists a function c : A(D) → V (H); for an arc of D, f = (u, v) ∈ A(D), we call c(f) = c(u, v) the color of f . A directed walk (directed path) P = (u0, u1, . . . , un) in D will be called an H-walk (H-path) ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Mathematics
سال: 2018
ISSN: 0012-365X
DOI: 10.1016/j.disc.2018.02.014