Kernels by properly colored paths in arc-colored digraphs

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Monochromatic cycles and monochromatic paths in arc-colored digraphs

We call the digraph D an m-colored digraph if the arcs of D are colored with m colors. A path (or a cycle) is called monochromatic if all of its arcs are colored alike. A cycle is called a quasi-monochromatic cycle if with at most one exception all of its arcs are colored alike. A subdigraph H in D is called rainbow if all its arcs have different colors. A set N ⊆ V (D) is said to be a kernel b...

متن کامل

Complexity of trails, paths and circuits in arc-colored digraphs

We deal with different algorithmic questions regarding properly arc-colored s-t trails, paths and circuits in arc-colored digraphs. Given an arc-colored digraph D with c ≥ 2 colors, we show that the problem of determining the maximum number of arc disjoint properly arc-colored s-t trails can be solved in polynomial time. Surprisingly, we prove that the determination of a properly arc-colored s-...

متن کامل

Complexity of Paths, Trails and Circuits in Arc-Colored Digraphs

We deal with different algorithmic questions regarding properly arc-colored s-t paths, trails and circuits in arc-colored digraphs. Given an arc-colored digraph D with c ≥ 2 colors, we show that the problem of maximizing the number of arc disjoint properly arc-colored s-t trails can be solved in polynomial time. Surprisingly, we prove that the determination of one properly arc-colored s-t path ...

متن کامل

Properly colored trails, paths, and bridges

The proper-trail connection number of a graph is the minimum number of colors needed to color the edges such that every pair of vertices are joined by a trail without two consecutive edges of the same color; the proper-path connection number is defined similarly. In this paper we consider these in both bridgeless graphs and graphs in general. The main result is that both parameters are tied to ...

متن کامل

Restricted domination in arc-colored digraphs

Let H = (V (H), A(H)) be a digraph possibly with loops and D = (V (D), A(D)) a digraph whose arcs are colored with the vertices of H (this is what we call an H-colored digraph); i.e. there exists a function c : A(D) → V (H); for an arc of D, f = (u, v) ∈ A(D), we call c(f) = c(u, v) the color of f . A directed walk (directed path) P = (u0, u1, . . . , un) in D will be called an H-walk (H-path) ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Mathematics

سال: 2018

ISSN: 0012-365X

DOI: 10.1016/j.disc.2018.02.014